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TECHNICAL NOTE 

Instability in a falling liquid film 
S. L. Soo 
Unive rs i t y  of  I l l i no i s -U rbana /Champa ign ,  Urbana  IL, U S A  
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The present note adds to Sha and Sop (1993) conceming the 
instability of a continuous falling liquid film over a plane, which 
may lead to the formation of dry patches. Longitudinal wave 
motion at the surface of a falling liquid film given by Kapitza 
(1948) has now been extended to include that attributable to 
transverse disturbances. At a certain average thickness of the 
film, thin spots of critical film thickness may occur, and the film 
may split into bands of liquid, thus reducing the effectiveness of 
cooling. 

The coordinates of thin film flow over a cylinder of large 
diameter are given by: x is the longitudinal coordinate along the 
wall and in the direction of film flow and gravity, y is parallel to 
the wall and normal to x, and z is normal to both; u, v, and w 
are their conjugate components of velocity; the subscript f de- 
notes distributed velocity over the thickness of the film. The 
momentum integral method, when applied to laminar film flow 
(Fulford 1964), gives the continuity equation in the following 
form: 

wflo b = -(a/aX) fobu f d z -  (a/ay) fobv f d z  

= d z / d t  1~ = d b / d t l  b = a b / a t  + usOb/ax  + vsOb/ay 

(1) 

by integrating for wf over the height of the film, z = 0 to z = b, 
and neglecting evaporation for the present. Here b is the film 
thickness, and the subscript s denotes the velocity at the surface 
of the film. The last two terms of Equation 1 were neglected by 
Kapitza (1948) but are significant when dealing with general 
wave motion. For laminar motion with a parabolic velocity 
profile, the surface velocity components of the film are 3 / 2  of 
the mean velocity components u and v of the film, or u s = 
(3/2)u ,  and v s = (3 /2)v ,  while the integrals of distributed veloc- 
ity over the thickness of the film b give ub and vb. Equation 1 
n o w  becomes: 

ab/Ot  + ( 3 / 2 ) ( u a b / a x  + vOb/Oy)  = - ( a u b / a x )  - ( O v b / a y )  
(2) 
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The momentum integral equations incorporating the effects of 
gravity and surface tension in terms of the mean film velocity, 
now take the form: 

(au/at) + (9 / lO)u(au/ax)  + (6 /5 )v (av /ay)  

- ( 3 / l O ) u ( a v / a y )  - ( 1 / 2 ) ( u / b ) ( a b / a t )  

- ( 3 / 1 0 )  ( u 2 / b )  ( a b / a x )  - ( 3 / 1 0 )  ( u v / b )  ( a b / a y )  

= - ( 3 v u / b  2) + g + ( t y / p ) ( a 3 b / a x  3) (3) 

where tr is the surface tension of the liquid, p is its density, and 

( 3 v / a t )  + ( 6 / 5 ) u ( a v / a x )  + ( 9 / l O ) v ( a v / a y )  

- ( 3 / 1 0 )  v ( a u / O x )  - ( 1 / 2 ) ( v / b ) ( O b / O t )  

- ( 3 / 1 0 ) ( v 2 / b )  ( a b / O y )  - ( 3 / l O ) ( u v / b ) ( a b / a x )  

= - ( 3 v v / b  2) + ( ( r / p ) ( a 3 b / a y  3) (4) 

The two-dimensional (2-D) disturbances accounted for in Equa- 
tions 3 and 4 delineate the modifications over that of Kapitza. 
Some understanding is gained from a solution for small perturba- 
tions ('quantities) from steady film flow (subscripts o) (Sha and 
Sop 1993) by taking: u = u o + u', v = v', and b = b o + b'. Equa- 
tions 2 to 4 become, to the first order of primed quantities: 

- ( l / b o ) ( a b ' / a t  ) + ( 1 / 2 ) ( u o / b o ) ( a b ' / a x )  

= ( a u ' / a x )  + ( a v ' / b y )  (5) 

( a u ' / a t )  + ( 9 / l O ) u o ( a U ' / a x )  - ( 3 / l O ) u o ( a v ' / a y )  

- ( 1 / 2 ) ( u o / b o ) ( a b ' / a t )  - ( 3 / l O ) ( u E / b o ) ( a b ' / a x )  

= _ (3VUo/b2o)[1 - 2 ( b ' / b o )  ] - (3vu' /b2o) + g 

+ (~,/o)(~3b'/ax 3) (6) 
( a v ' / a t )  + ( 6 / 5 ) u o ( a v ' / a x )  = - (3vv ' /b2o)  

+ ( t ~ / p ) ( a 3 b ' / a y  3) (7) 

Equation 7 shows that the transverse wave is motivated by the 
principal motion in the x-direction and is a measure of transverse 
instability. Equations 5 -7  can be reduced to one in terms of b' 
by taking partial derivatives of terms in Equation 6 with respect 
to x, and those in Equation 7 with respective to y and adding, 
followed by substitution of Equation 5. One gets a wave equation 
with b' as the only dependent variable: 

-- ( a 2 b ' / a t  2) - ( 9 / l O ) u o ( a 2 b ' / a t a x )  + (3 /20 )u2o (a2b ' / ax  2) 

= ( 9 V u o / b 2 o ) ( a b ' / a x )  + ( 3 v / b 2 o ) ( a b ' / a t )  + (~rbo /p )  

X [(a4b ' /Ox4) "4" (a4b ' /Oy4)]  (8) 
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Equation 8 can be solved by postulating b' in the form: 

b ' = b  1 e x p [ i ( t o t - k x x - k y y ) ]  (9) 

where the wave number k r (=  2'rr//hy, hy is the wave length in 
the y-direction) corresponds to a transverse perturbation in addi- 
tion to longitudinal wave number kx;  o~ is the circular frequency, 
and b~ denotes the amplitude. Substituting into Equation 8, the 
imaginary (dissipative) component gives: 

to = 3u  ok  x or t o / k  x = 3 u  ° z phase velocity -= c (10) 

the phase velocity, for the principal longitudinal wave motion; a 
relation obtained in Kapitza (1948) via a different argument. The 
real part now gives: 

to 2 - (9 / lO )uo tokx  - (3/20)u2ok~ = ( e b o / p ) ( k  4 + k 4) (11) 

Because u and b are functions of  ( x -  ct) for a given y, the 
longitudinal motion has the relation: 

b(C-Uo-.') 
= b o ( c  - Uo) = bo i l  + ( b ' / b o ) ] ( c  - u o - u ' )  = constant 

(12) 

giving u'. Substituting Equations 9, 10, and 12 into Equation 6 
for a given y with viscous forces balanced by those of gravity 
gives: 

k.~ = (Tu2oP/Z~rbo)  ' /2 = 2"rr /h  x (13) 

(note that 7 / 2  replaces 4.2 in Kapitza). With the substitution of 
Equations 10 and 13, Equation 11 now gives k y / k . , =  
(53/70) 1/4= 0.93 = h x / h y ;  i.e., the transverse wave length is 
slightly larger than that of the longitudinal wave. 

The amplitude of fluctuation of u' and b' given by Kapitza 
(1948) with the rate of energy dissipation by viscosity equal to 
the rate of change of potential energy by gravity as b I = 0.21b o, 
and l u ' l -=0 .35u  o, are now extended to give Iv ' [  =-0.16u o. 
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Hence, the transverse motion contributes negligible dissipation of 
energy. 

When applied to the film cooling of a nuclear containment 
vessel (Sha and Soo 1993), the magnitude of the wave lengths of 
the waves is seen for a water film at room condition as follows: 

b o, mm 0.2 0.4 

b o - b , ,  mm 0.158 0.316 

hr ,  mm.  3.25 1.17 

b o - b~, the minimum film thickness at the trough of the waves, 
can be compared to the critical film thickness given by (Hartley 
and Murgatroyd 1964) of 0.231 and 0.175 mm for water with a 
contact angle of 20 and 10 ° with the surface, respectively. As the 
film thickness reduces at the trough formed by the waves to its 
critical value by evaporation, for instance, initiation of dry patches 
is expected to occur in the above range of flow conditions. The 
above relation gives a minimum spacing between the liquid 
streaks. 

Important practical modifications to the present theoretical 
prediction will be the manufacturing tolerance of the surface and 
its coating, surface contamination, and a possible nonuniformity 
in the inlet water distribution system in industrial devices. 
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